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Abstract 21 

Sagebrush ecosystems of the western U.S. can transition from extended periods of 22 

relatively stable conditions to rapid ecological change if acute disturbances occur. Areas 23 

dominated by native sagebrush can transition from species-rich native systems to altered states 24 

where non-native annual grasses dominate, if resistance to annual grasses is low. The non-native 25 

annual grasses provide relatively little value to wildlife, livestock, and humans and function as 26 

fuel that increases fire frequency. The more land area covered by annual grasses, the higher the 27 

potential for fire, thus reducing the potential for native vegetation to reestablish, even when 28 

applying restoration treatments. Mapping areas of stability and areas of change using machine-29 

learning algorithms allows both the identification of dominant abiotic variables that drive 30 

ecosystem dynamics and the variables’ important thresholds. We develop a decision-tree model 31 

with rulesets that estimate three classes of sagebrush condition [i.e. sagebrush recovery, tipping 32 

point (ecosystem degradation), and stable]. We find rulesets that primarily drive development of 33 

the sagebrush recovery class indicate areas of mid elevations (1 602 m), warm 30-yr July 34 

temperature maximums (tmax) (30.62 °C), and 30-yr March precipitation averages equal to 35 

26.26 mm, about 10% of the 30-yr annual precipitation values. Tipping point and stable classes 36 

occur at elevations that are lower (1 505 m) and higher (1 939 m), respectively, more mesic 37 

during March and annually, and experience lower 30-yr July tmax averages. These defined 38 

variable averages can be used to understand current dynamics of sagebrush condition and to 39 

predict where future transitions may occur under novel conditions.  40 

Keywords: climate, decision-tree model, machine learning, non-native annual grass, sagebrush, 41 

western U.S. 42 

 43 

 44 
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Introduction 45 

Sagebrush (Artemisia spp.) ecosystems of the western U.S. are imperiled (Chambers and 46 

Wisdom 2009; U.S. Fish and Wildlife Service 2013). Threats to the ecosystems include wildfire, 47 

climate change, development, invasion of non-native annual grasses, and expansion of conifers 48 

(Chambers et al. 2017). The threats compromise the ecosystems’ abilities to provide services like 49 

clean water and air, wildlife habitat, forage for grazing, recreational opportunities, and 50 

biodiversity (Rose et al. 2015). The amount of area sagebrush currently occupies is little more 51 

than half its historical range (Chambers et al. 2017; Davies and Bates 2019). Euro-American 52 

migration into the western U.S., and the accompanying increase in disturbances and invasion of 53 

non-native grasses, coincided with sagebrush range reduction (U.S. Fish and Wildlife Service 54 

2013; Chambers et al. 2017). Disturbances (e.g. land-use change, fire, overgrazing), often 55 

multiple compounding disturbances, caused sagebrush ecosystems to transition from extended 56 

periods of relatively stable conditions where native shrub and perennial grass species dominated 57 

to ecologically degraded conditions where non-native annual grasses invaded and now dominate. 58 

To identify transitional locations, we defined criteria for three classes of sagebrush condition, 59 

developed a dataset that reflected the classes, integrated the dataset with relevant independent 60 

variables into a decision-tree model, and used the resulting model algorithms to develop spatially 61 

explicit maps of sagebrush condition class. For purposes of this study, we named the three 62 

classes sagebrush recovery, tipping point (representing ecological degradation), and stable.  63 

Most restoration efforts in sagebrush ecosystems have been minimally effective 64 

(Blomberg et al. 2012; Svejcar et al. 2017). Therefore, recovery to a sagebrush-dominated 65 

system after a disturbance can be expensive and take many years, if recovery ever occurs 66 

(Svejcar et al. 2017), although recent studies have preliminarily shown enhanced success of 67 
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sagebrush restoration (Davies et al. 2018; Germino et al. 2018; Davies and Bates 2019). 68 

Sagebrush ecosystems vary in their abilities to resist non-native annual grass invasion and 69 

recover from disturbance. Systems with low resistance and resilience were manifested in large 70 

geographical areas of non-native annual grass stands that have increased fire frequencies and 71 

threaten adjacent healthy rangeland systems. Chambers et al. (2007) found that specific factors 72 

influenced how vulnerable a sagebrush ecosystem was to cheatgrass (Bromus tectorum L) 73 

invasion, the most ubiquitous non-native annual grass in the study area. Climate, disturbance 74 

regime, the competitive abilities of the resident species, and traits of the invader were all 75 

influential factors of invasibility. Invasibility increased when resources were unused by native 76 

vegetation, such as after a fire (Rau et al. 2014; Roundy et al. 2018). Invasion also occurred 77 

when resource availability was inconsistent (Rau et al. 2014), which led to periods when 78 

resource supply exceeded the resident species’ ability to utilize it while invasive species’ 79 

propagule pressure existed (Davis et al. 2000). This phenomenon could have occurred in low to 80 

mid elevations of the sagebrush steppe (Chambers et al. 2014) where precipitation exhibited high 81 

temporal variability (Bradley and Mustard 2005). In areas of relatively high perennial vegetation 82 

productivity, greater resource utilization by perennial vegetation reduced ecosystems’ 83 

invasibility (Chambers et al. 2014). How efficient an invading plant was at using resources when 84 

they become available could have determined a plant’s invasion success (Bansal et al. 2014). 85 

Greater resilience levels have been positively associated with higher precipitation, greater soil 86 

resources, and higher plant productivity, and linked to higher levels of resistance (Chambers et 87 

al. 2014). 88 

The goals of this study were to identify abiotic variables that most influenced the 89 

prediction of three classes of sagebrush condition and to establish the most common 90 
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environmental thresholds that characterized each class. We clarified and defined some of the 91 

abiotic characteristics and associated thresholds that influenced sagebrush ecosystems’ resilience 92 

to disturbance, invasibility to non-native annual grasses, and stability. We parameterized 93 

decision-tree software in two ways so that it generated 1) a predictive model based on a tree 94 

structure and 2) a descriptive model based on rulesets. These two models allowed us to achieve 95 

the following objectives: 96 

1) Develop a spatially explicit predictive map of three classes of sagebrush condition. 97 

2) Develop a spatially explicit ruleset map that shows where every ruleset occurred. 98 

3) Identify abiotic variables that most strongly drive development of the sagebrush 99 

condition class model. 100 

4) Establish thresholds of the most commonly used abiotic variables that delineate each 101 

sagebrush class. 102 

Methods 103 

Study area 104 

 We focused our study on arid and semiarid sagebrush ecosystems in the western U.S. 105 

where annual grass invasion was likely, sagebrush was native, and wildlife and livestock graze. 106 

The study excluded areas higher than 2 250 m elevation because cheatgrass was much less likely 107 

to invade at elevations above about 2 000 m in the northern Great Basin (Boyte et al. 2015) and 108 

because these areas were more resistant to cheatgrass invasion and more resilient to disturbances 109 

than areas at lower elevations (Chambers et al. 2014). Also excluded were areas where the 2011 110 

National Land Cover Database (The National Land Cover Database 2011) classified a pixel as 111 

something other than shrub or herbaceous/grassland (Fig. 1). Excluded areas were masked and 112 

neither mapped nor included in processes and analyses.  113 
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The study area encompassed 286,574 km2 including parts of 6 states. The 30-yr (1981 – 114 

2010) climate averaged equal 337 mm of precipitation, a minimum temperature of 0° C, and a 115 

maximum temperature of 14° C (PRISM Climate Group). The elevation minimum equaled 568 116 

m with a mean of 1 562 m when the 2 250 m limit was observed (North American Vertical 117 

Datum 88). The topography varied substantially with alternating mountains and valleys 118 

throughout much of the study area. The vegetation was composed of mostly shrubs, native 119 

grasses, and invasive grasses with the dominant shrubs being sagebrush (Artemisia spp.). Some 120 

of the common sagebrush species included Basin big sagebrush (A. tridentata Nutt. ssp. 121 

tridentata), Wyoming big sagebrush (A.t. Nutt. ssp. wyomingensis Beetle & Young), and low 122 

sagebrush (A. arbuscula Nutt.) Other common shrub species included shadscale saltbush 123 

(Atriplex confertifolia [Torr. & Frem.] S. Watson), rabbitbrush (Chrysothamnus spp.), 124 

greasewood (Sarcobatus spp. Nees), and some antelope bitterbrush (Purshia tridentata [Pursh] 125 

DC.). Grasses included Sandberg bluegrass (Poa secunda), basin wildrye (Leymus cinereus 126 

[Scribn. & Merr.] A̕. Löve), Idaho fescue (Fescue idahoensis Elmer), and the introduced crested 127 

wheatgrass (Agropyron cristatum L.). Several annual grasses have invaded the study area 128 

including cheatgrass, North African wire grass (Ventenata dubia [Leers] Coss.), medusahead 129 

(Taniatherum spp.), and, in the warmest and most arid places, red brome (Bromus rubens L.). 130 

Datasets 131 

We categorized the datasets used in this study into two types: 1) the sagebrush condition 132 

class reference dataset. This dataset was developed from four remotely sensed derived datasets, 133 

and parameters were defined by the sagebrush condition criteria. The four datasets were 134 

described in the next four subsections, and the sagebrush condition criteria were defined in the 135 

subsection “Sagebrush Condition Classes”; and 2) datasets used as drivers in the decision-tree 136 
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model. The model drivers included an elevation dataset that was derived from The National Map 137 

(https://nationalmap.gov/elevation.html). The elevation dataset had a native 30-m spatial 138 

resolution, and we spatially averaged it using a 7x7 focal scan and resampled it to 250 m using 139 

nearest neighbor. Polaris soils data were 78-m native spatial resolution data. We spatially 140 

averaged those data using a 3x3 focal scan, and then resampled them to 250 m using nearest 141 

neighbor. The climate data, which included 30-yr annual, seasonal, and monthly precipitation 142 

and temperature minimums and maximums (PRISM Climate Group), were resampled from 800 143 

m to 250 m using bilinear interpolation.  144 

The four remotely sensed derived datasets described next used Moderate Resolution 145 

Imaging Spectroradiometer (MODIS) sensor’s Normalized Difference Vegetation Index (NDVI) 146 

data (Jenkerson et al. 2010) at 250-m spatial resolution. NDVI allows the monitoring of seasonal 147 

and interannual vegetation greenness and has been used to measure green biomass (Jensen 2005). 148 

We applied regression-tree optimization protocol (Gu et al. 2016; Wylie et al. 2018) to the 149 

development of all regression-tree models to minimize each models’ errors and overfitting 150 

tendencies.  151 

Annual herbaceous percent cover 152 

We developed and published a time series (2000 – 2016) of spatially explicit annual 153 

herbaceous percent cover estimates (Boyte and Wylie 2017)   at 250-m spatial resolution 154 

throughout much of the western U.S. While the time series estimated annual herbaceous percent 155 

cover, the primary annual herbaceous type targeted was cheatgrass because of its pervasive 156 

dominance in sagebrush ecosystems. Cheatgrass was highly responsive to annual precipitation 157 

(Bradley and Mustard 2005; Pilliod et al. 2017), leading to temporal variation in annual 158 

herbaceous percent cover. Annual herbaceous percent cover demonstrated high spatial variation 159 
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because of biophysical factors and a history of disturbances (Chambers et al. 2014). We 160 

developed the annual herbaceous estimates using a regression-tree model integrated with field-161 

based, remotely sensed, climate, fire, and biophysical data (Boyte et al. 2019a). The model used 162 

more than 30,000 field-based training data points from 5 years (Boyte et al. 2019a) to develop 163 

spatially explicit estimates of annual herbaceous percent cover (see Table 1 for model accuracy 164 

assessments). We used 17 years of 7-day pixel composites of NDVI data to map the wide-165 

ranging annual herbaceous percent cover dynamics inherent to the water-limited sagebrush 166 

ecosystem. Driving variables for the model included native 250-m remotely sensed derivatives – 167 

annual growing season NDVI, summer NDVI, and start of season time (a phenology measure). 168 

Additional variables consisted of a year-since-fire dataset, PRISM 30-yr precipitation (PRISM 169 

Climate Group), Polaris soils data – organic matter and available water capacity, and topographic 170 

data – elevation, a wetness index, and north- and south-facing slope indices. Aspects were 171 

defined by azimuths between 315° and 45° (north aspects) and 135° and 225° (south aspects) on 172 

slopes greater than 8.5% (where aspect angles were measured in a clockwise direction and north 173 

= 0°). Undefined aspects were assigned a null value.  174 

Sagebrush percent cover 175 

Aggregated 250-m enhanced MODIS NDVI from weeks 15 – 40 of each year of the 176 

study period (2001 – 2015) served as the growing season NDVI. Sagebrush percent cover was a 177 

derivative of growing season NDVI, calculated on a pixel-by-pixel basis using the following 178 

algorithm (Eq. 1) (Rigge et al. 2019). 179 

[(0.4247 ∗  	

�� growing season NDVI)  −  43.839]     [1] 180 

 181 
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Sagebrush Ecosystem Performance Anomaly 182 

In sagebrush ecosystems, annual grasses influenced the NDVI signal, which could have 183 

caused sagebrush percent cover to be overestimated, especially in recently disturbed areas. To 184 

mitigate this problem, we developed a regression-tree model that predicted sagebrush percent 185 

cover by incorporating seasonal and monthly weather data to separate effects of disturbances and 186 

land management from effects of weather (Wylie et al. 2012). The dataset was the sagebrush 187 

ecosystem performance anomaly, or sagebrush anomaly, and it introduced temporal variation 188 

throughout the study period.  189 

We calculated the difference between the sagebrush percent cover and the predicted 190 

sagebrush percent cover datasets and used statistical confidence levels to define normal and 191 

abnormal ecosystem performance on an annual time step (Wylie et al. 2008; Gu and Wylie 2010; 192 

Wylie et al. 2012; Rigge et al. 2013). We labeled pixels of abnormal performance as 193 

overperformance and underperformance depending on whether a pixel fell above or below the 194 

95% confidence level, respectively. Pixels with high normal or overperformance that also 195 

experienced high levels of annual grass percent cover (≥ 10%) and low levels of tree cover (≤ 196 

15%) were pixels of likely sagebrush overestimation and not included as reference data.  197 

Sagebrush site potential 198 

Sagebrush site potential was developed as a measure of an ecosystem’s inherent 199 

productivity (Wylie et al. 2008) and, in this study, represented the long-term average production 200 

of sagebrush biomass in a good sagebrush state, i.e. non-degraded or non-disturbed (Rigge et al. 201 

2019). Site potential introduced spatial variability across the study area, whereas the sagebrush 202 

anomaly, sagebrush percent cover, and annual herbaceous percent cover datasets introduced 203 

temporal variability throughout the study period. We defined a pixel as in good sagebrush state if 204 
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more than 40% of a pixel’s vegetation cover was sagebrush, less than 10% of its absolute cover 205 

was annual herbaceous, and no fires burned in the pixel from 1993 – 2014. A final criterion 206 

required that more than 70% of the pixel be classified by the National Land Cover Database as 207 

shrub or herbaceous/grassland land cover.  208 

Long-term (2000 – 2015), above-average growing season NDVI from MODIS at 250-m 209 

resolution served as a proxy for sagebrush site potential. The MODIS NDVI values ranged from 210 

-0.01 to 0.59 on a scale of -1 to 1. A random stratification of pixels that met the definition of a 211 

good sagebrush state were selected as training samples, with a low sagebrush productivity tier 212 

ranging from -0.01 to 0.14 (n = 3 543), a moderate tier ranging from 0.15 to 0.22 (n = 3 695), 213 

and a high tier ranging from 0.23 to 0.59 (n = 3 514). Site potential was modeled in regression-214 

tree software, and model accuracy assessments are displayed in Table 1. The model was driven 215 

by Polaris soils data – organic matter and available water capacity – at 0 to 30 cm depth, a 216 

compound topographic index, steep north- and south-facing slopes, and Landsat-based NDVI. 217 

The Landsat-based NDVI was, on a pixel-by-pixel basis, the value equal to the NDVI’s 90th 218 

percentile in the months of August and September from 1986 – 2013. Landsat NDVI values used 219 

in the study were unlikely to be affected by disturbances that occurred after 1986. Landsat NDVI 220 

data were native 30-m spatial resolution data that we spatially averaged using a 7x7 focal scan 221 

and then resampled to 250 m.  222 

Sagebrush condition classes 223 

We developed criteria that defined three classes of sagebrush condition – sagebrush 224 

recovery, tipping point, and stable. The criteria were limited by the study period (2000 – 2015) 225 

and determined using the four remotely sensed derived datasets just described. Any pixel that 226 

met the criteria for a specific class was a reference data candidate unless the pixel met the criteria 227 
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for more than one class, then it was removed from the pool of reference data candidates. We 228 

classified a pixel as sagebrush recovery if it met two criteria: 1) for at least 3 years early (2001 – 229 

2010) in the time series, that pixel had annual grass percent cover ≥ 10%, sagebrush site potential 230 

> 7%, sagebrush anomaly was high normal performance or above, and tree canopy ≤ 15%; and, 231 

2) for at least 3 years late (2011 – 2015) in the time series, that same pixel had annual grass 232 

percent cover < 10%, sagebrush percent cover > 10%, and sagebrush anomaly was normal, i.e., it 233 

functioned as we expected sagebrush should. A total of 61 444 pixels, or 1.3% of unmasked 234 

pixels, met the sagebrush recovery criteria. Pixels that met the criteria for a specific class could 235 

be randomly selected as a dependent variable in the sagebrush condition class model.   236 

We classified a pixel as tipping point if it met two criteria: 1) for 2 years early (2001 – 237 

2005) in the time series, the pixel had annual grass percent cover < 10%, sagebrush percent cover 238 

> 7%, and normal sagebrush anomaly; and, 2) for at least 2 years late (2011 – 2015) in the time 239 

series, that same pixel had annual grass percent cover ≥ 10%, sagebrush site potential was at 240 

least moderate (> 7%), and sagebrush anomaly was at least high normal – high normal to 241 

overperformance sagebrush anomaly can indicate cheatgrass presence. A total of 101 663 pixels, 242 

or 2.2% of unmasked pixels, met the tipping point criteria. 243 

We classified a pixel as stable if it met two criteria: 1) for 13 or more years during the 244 

study period, the pixel had annual grass percent cover < 10%, normal sagebrush performance, 245 

and annual grass percent cover no more than one standard deviation from the study period mean 246 

for that pixel; and, 2) for 13 or more years during the study period, that same pixel had sagebrush 247 

percent cover > 7% and sagebrush percent cover no more than one standard deviation from the 248 

study period mean for that pixel. A total of 11 029 pixels, or 0.24% of unmasked pixels, met the 249 

stable criteria. 250 
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When the decision-tree software classified a pixel using the tree structure, it established a 251 

confidence level for that prediction using a value between 0 and 1 (Quinlan 2013). The class 252 

confidence levels for the sagebrush class condition model ranged from 0.33 to 1.00. We defined 253 

a class confidence level equal to or greater than 0.70 as high probability, a class confidence level 254 

equal to or greater than 0.50 and less than 0.70 as moderate probability, and a class confidence 255 

level equal to or greater than 0.33 and less than 0.50 as low probability. 256 

Model development 257 

The decision-tree model used, See5 (https://www.rulequest.com/), was designed to obtain 258 

information from databases of primary (dependent variable) and ancillary (independent 259 

variables) data and then construct diagnostic rules based on that information to predict discrete 260 

classes (Quinlan 2013). We developed a database with a randomly stratified sample of pixels (n 261 

= 16 550), of which 15% met the criteria for stable pixels, 32% for sagebrush recovery pixels, 262 

and 53% for tipping point pixels. We used a sample of possible pixels because pixels that met the 263 

criteria for the stable class equaled only about 6% of all possible reference data pixels. To avoid 264 

underrepresenting the stable class in our model, we set a minimum requirement of 2 500 pixels 265 

from each class. To avoid both spatial autocorrelation issues and overrepresenting the tipping 266 

point class, we limited the number of sample pixels from that class. We developed a test dataset 267 

of 2 500 pixels that was a random subset of all potential dependent variable pixels not used for 268 

model training. The test dataset provided an independent validation of model accuracy. We also 269 

calculated a ten-fold cross validation of the training data, which provided a second independent 270 

validation of model accuracy. 271 

We developed two classification models (Fig. 2): one to predict classes and a second to 272 

describe rulesets that defined how independent variables were used. The predictive model used a 273 
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tree structure and ran with no user-defined constraints to its number of nodes, allowing the 274 

modeling software to use an automated protocol to prune the tree. A mapping software, 275 

MapSee5, applied the See5 classifiers to the independent variables’ imagery to generate a 276 

sagebrush condition class prediction map (Boyte et al 2019b)  . The descriptive model utilized a 277 

user-defined number of rulesets. Limiting the number of rulesets greatly enhanced the user’s 278 

ability to interpret the associated thresholds of independent variables but sacrificed some 279 

accuracy. A low number of rulesets facilitated the ecological interpretation of the rulesets, which 280 

increased the understanding of the descriptive model (Quinlan 2013). We included identical 281 

drivers for both models, and they were 30-yr climate, elevation, and soils data. The 30-yr climate 282 

data included average annual values, average values of selected months, and average seasonal 283 

values for spring (March – May) and summer (June – August). Precipitation (ppt), temperature 284 

maximums (tmax), and temperature minimums (tmin) were the 30-yr climate variables used. The 285 

soils data included Polaris soil organic matter and available water capacity (Table 2). Of the 30 286 

variables integrated into the sagebrush condition models, 6 were identified as being most 287 

impactful to the development of both the predictive and the descriptive models. These six 288 

variables were analyzed and used to delineate thresholds that characterized sagebrush condition. 289 

We also analyzed the output of the descriptive model that defined the rulesets, identified 290 

confidence levels for rulesets and their associated classes, and calculated the geographical space 291 

each ruleset covered. The rulesets were input into a conditional-statement model that mapped 292 

each ruleset in its spatial context based on stratification thresholds from the independent 293 

variables (Fig. 3). The descriptive model incorporated 21 rules using 15 independent variables. 294 

Nine rulesets defined the variable conditions that made up the tipping point class, and the ruleset 295 

from that class with the highest prediction confidence (0.839) is shown below. This ruleset 296 
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constituted about 2.39% of all training points, 1 390 km2 of the study area, and defined a tipping 297 

point as: 298 

Elevation >1602 m AND ≤1798 m 299 

April ppt > 19 mm 300 

Summer ppt ≤ 26 mm 301 

June tmin ≤ 26 °C 302 

Summer tmin ≤35 °C. 303 

 304 

Validation 305 

We validated the sagebrush condition class map using two datasets and methods. First, 306 

we acquired from Bureau of Land Management (BLM) staff 2013 – 2016 BLM Assessment 307 

Inventory and Monitoring (AIM) plot-level data that were collected from the field, typically 308 

using the line-point intercept method at three transects of 30 m each within a spoke design 309 

(Herrick et al. 2017). Field data that can be used to validate remotely sensed data were difficult 310 

and expensive to gather and process and were therefore relatively scarce (Browning et al. 2015; 311 

Bradley et al. 2018). Field data that matched the spatial resolution of a 250-m eMODIS NDVI 312 

pixel were even more uncommon. Once obtained, field data can be hard to apply to remotely 313 

sensed data (Bradley et al. 2018), especially remotely sensed data with coarser spatial 314 

resolutions. The AIM data were ubiquitous for our study area and period, and for our purposes, 315 

provided an acceptable measure of validation. 316 

We examined the AIM plot-level data for percent cover of sagebrush and non-native 317 

annual grasses and compared those data to corresponding pixels and their predicted classes. If 318 

the sagebrush and invasive annual grass percent cover values for an AIM plot matched a specific 319 

class’ criteria, and that class corresponded to the class represented on the predictive map, then 320 

that data point was considered correct. If the non-native annual grass percent cover for any AIM 321 

field plot was equal to or greater than 15%, then the pixel had to be classified as tipping point to 322 
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be correct, regardless of the percent cover of sagebrush because areas with this level of 323 

cheatgrass were more likely to have burned (Bradley et al. 2018) and therefore, for this study’s 324 

purpose, were identified as a tipping point. Finally, if sagebrush and invasive annual grass 325 

percent cover values of a plot did not meet the criteria for any class, then the data point was 326 

removed from the analysis because the data point may have been associated with factors other 327 

than those that defined the sagebrush condition classes. 328 

Second, we overlaid Monitoring Trends in Burn Severity (MTBS) polygons from 2001 – 329 

2015 on the sagebrush condition class map (Monitoring Trends in Burn Severity 2018). MTBS 330 

polygons in the western United States represented wildland fires in almost all circumstances 331 

because of the relative infrequency of prescribed fires in the West and the minimum 1 000-acre 332 

fire-size threshold used to establish the polygon extents (Joshua Picotte, Fire Specialist, MTBS 333 

Science Support, written communication, 25 September 2019). We calculated the percent of total 334 

area burned by class for each year. While we display all study period years in Figure 4, we focus 335 

the validation on the last 5 years of the study period because of the time dimension used in our 336 

criteria to define classes. This time dimension focused the transition from a tipping point to a 337 

sagebrush recovery class and the transition from a stable sagebrush ecosystem state to a tipping 338 

point class on the last 5 years of the time series. Given this time dimension, the last 5 years of the 339 

time series were most critical in assessing the accuracy of these datasets. The MTBS polygons 340 

were used to help define sagebrush site potential, but the effect on the sagebrush condition 341 

classes would likely be relatively minimal as only two of its criteria used site potential in their 342 

definitions.    343 

 344 

 345 
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Results 346 

Model development 347 

 The predictive and descriptive models used independent variables to drive model 348 

development, and although the same variables were available to both models, the predictive 349 

model used all available variables whereas the descriptive model used only some (Table 2). The 350 

two models also used variables at different frequencies. These phenomena primarily occurred 351 

because we developed the predictive model by applying few constraints to the decision trees that 352 

predicted classes, and we developed the descriptive model by severely limiting the number of 353 

rulesets that described how independent variables were associated with each class.  354 

Model variable usage was presented as a percentage and calculated by the decision-tree 355 

software based on if the value of the variable was known and if the variable was used in the 356 

prediction of a class (Quinlan 2013). Multiple variables’ model usage frequencies equal 100% in 357 

the predictive model, including elevation and 30-yr precipitation. These two variables were most 358 

frequently used in the descriptive model at 75% and 73%, respectively. The frequent use of these 359 

variables in both models indicated their heavy influence in classifying sagebrush condition. 360 

Other variables of importance for both the predictive and the descriptive models were available 361 

water capacity, 30-yr July temperature maximum, and 30-yr March temperature minimum. July 362 

weather variables, collectively, influenced the predictive model more than any other month’s 363 

weather variables, although March weather variables were almost as influential. March and July 364 

weather variables were the weather variables used most frequently in the descriptive model, 365 

although their frequency of use was much less than in the predictive model and much less than 366 

elevation and 30-yr precipitation. May was the month with weather variables least used in the 367 

predictive model. Seasonal and other monthly weather averages were relatively influential in the 368 

predictive model, but many were used sparingly or not at all in the descriptive model. Summer 369 
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temperature maximum was not used in the descriptive model and was used the least in the 370 

predictive model, indicating little influence on sagebrush condition class. 371 

General characteristics of dominant variables 372 

 To establish the general characteristics of the dominant variables associated with each 373 

class – sagebrush recovery, tipping point, stable – we calculated a weighted average based on the 374 

percentage of study area covered by each ruleset and connected the averages to the most 375 

frequently used variables in the descriptive model (Table 3). We also analyzed the dominant 376 

variable thresholds defined by the rules in the descriptive model. Elevation and 30-yr average 377 

precipitation overwhelmingly drove model development, and distinct differences existed for 378 

elevation and 30-yr precipitation averages between sagebrush condition classes. The stable class 379 

was substantially more mesic and at higher elevations than either the sagebrush recovery or 380 

tipping point classes. Data also indicated that the stable class was cooler during March and July. 381 

The sagebrush recovery class occurred at elevations slightly higher than the tipping point class, 382 

but the tipping point class was more mesic, and, during mid-summer, cooler. The values for 383 

available water capacity varied little between classes, but soil organic matter increased from 384 

sagebrush recovery (38.85 kg • m-2) to tipping point (79.92 kg • m-2) to stable (108.10 kg • m-2) 385 

classes. The tipping point class covered a substantial majority of the study area, so we expected, 386 

on average, this class to be the most variable. 387 

Characteristic thresholds of dominant variables 388 

Table 4 shows the variables that were the most impactful drivers for both the predictive 389 

and descriptive models and connects those drivers to the rulesets they influenced. Less 390 

commonly used drivers did influence the rulesets, but there were too many (30) to display 391 
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concisely and cogently, and their impact on the development of the descriptive model was 392 

relatively minimal. Several elevation values served as thresholds to develop the descriptive 393 

model, but one value, 1 602 m, was present in 71% of all rulesets, including 6 of the 7 rulesets 394 

for the sagebrush recovery class. The tipping point class used the 1 602 m elevation threshold in 395 

6 of its 9 rulesets, and for this class, at least 35% of the overall study area was defined by rulesets 396 

at or below 1 602 m with 22% at or below 1 339 m elevation. Less than 4% of the study area in 397 

this class was defined by rulesets higher than 1 602 m. All rulesets in the stable class were 398 

defined by elevations above 1 602 m with 3 of its 5 rulesets defined by > 1 602 m threshold.  The 399 

weighted average elevation for the stable class was more than 338 m higher than either of the 400 

other two classes. The 30-yr precipitation variable threshold that predominated in the descriptive 401 

model’s development was 338 mm, a number almost identical to the overall study area’s 30-yr 402 

precipitation average (337 mm). This threshold value was present in 48% of all rulesets 403 

including all five of the stable class’ rulesets, a class that was mostly present at higher elevations. 404 

Rulesets 14 (tipping point class) and 18 (stable class) showed 30-yr precipitation threshold 405 

values at > 338 mm, and these two rulesets’ average elevations were 1760 m and 2129 m, 406 

respectively, substantially higher than their class means. Generally, rulesets that primarily drove 407 

development of the sagebrush recovery class indicated areas of mid elevations, warm July 408 

temperature maximums, and 30-yr March precipitation averages about 10% of the 30-yr average 409 

precipitation values. For the tipping point class, rulesets occurred at the lowest average 410 

elevations of the three classes, although the elevation range was widest. Annual precipitation 411 

totals were about halfway in between the other two classes, and March temperature minimums 412 

were lower than freezing (0 °C). Variables that drive development of the stable class indicated 413 

space that was at considerably higher elevations, received substantially more average annual 414 
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precipitation, and had considerably lower average March temperature minimums than the other 415 

two classes.  416 

Spatial representation of the descriptive model 417 

Figure 3 displays the spatial arrangement of the rulesets defined by the descriptive model. 418 

Multiple rulesets can apply to an individual pixel, but we programmed the conditional-statement 419 

model so that a ruleset with the highest accuracy spatially defined a pixel, superseding rulesets 420 

with lower accuracies. The rules from the tipping point class (rulesets 8 – 16) cover 70.36% of 421 

the study area including highly populated areas in Idaho’s Snake River Plain where elevations 422 

were lower than average, fires were relatively common, and ecosystem transformations were 423 

often driven by human activities. Northeastern and north-central Nevada were predominantly 424 

covered by the sagebrush recovery class (rulesets 1 – 7; 21.29% of study area), specifically 425 

rulesets 1 and 7. The stable class (rulesets 17 – 21; 8.35% of study area) mainly occupied areas 426 

of transitional and higher elevations. The average elevation of a stable pixel equaled 1939 m, 427 

substantially higher than either of the two other classes (Table 3). Ruleset 1 transitioned into and 428 

intermixed with ruleset 10 in north-central and northwest Nevada. Overall, ruleset 1 territory 429 

occupied a weighted-average elevation of 1442 m, whereas rule 10 occupied a weighted-average 430 

elevation of 1168 m and dominated the low elevation extents of the study area. In the geographic 431 

area of northwest Nevada where a basin and range topography of alternating elevations exists, 432 

rulesets transitioned relatively frequently with elevation changes. The sagebrush recovery and 433 

stable classes encompassed much of the northwesternmost corner of Nevada, coinciding with 434 

higher elevations. The stable class occupied the highest elevations in this geographic area and in 435 

northeast Nevada and in the northeast corner of the study area. With few exceptions, 436 

southeastern Oregon was covered by tipping points rules and mostly occupied low and relatively 437 
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low elevations. The 30-yr annual precipitation averaged in this area experienced substantial 438 

variability with values ranging from 274 mm to 474 mm. 439 

Spatial representation of the predictive model 440 

The predictive model’s spatial output (Fig. 5) displayed similar spatial patterns to the 441 

descriptive model’s patterns of sagebrush recovery, tipping points, and stable classes. 442 

Differences exist between the two maps because, as discussed above, the two models were 443 

developed with different goals. One area where the two maps deviate was in Idaho on the eastern 444 

edge of the Snake River Plain and near the Oregon/Idaho border on the western edge of the 445 

Snake River Plain where the predictive model displays sagebrush recovery and the descriptive 446 

model displays tipping points. Sagebrush recovery pixels constituted 28.77% of all unmasked 447 

pixels, and they were located primarily in north-central and northeast Nevada with some 448 

scattered in and around the periphery of the Snake River Plain. Small pockets of recovery existed 449 

in topographically diverse areas just west of the Snake River Plain in southeast Oregon. A 450 

considerable section of the rest of southeast Oregon was modeled as sagebrush recovery. The 451 

majority (57.36%) of the predictive map was classified as tipping point, while much of the 452 

northern tier met the classification of high probability. A relatively sizeable section of the study 453 

area along the California / Nevada border was also classified as high probability of tipping point. 454 

The stable class covered 13.87% of the study area, mostly at higher elevations stretching along 455 

and across Nevada’s northern border. In the northeast corner of the study area, the stable class 456 

frequently intermixed with both sagebrush recovery and tipping point classes. 457 

 458 

 459 
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Validation 460 

Despite the spatial incongruence between the 250-m datasets used in this study and the 461 

AIM data (Boyte et al. 2019a), the overall agreement between the three classes and the field-462 

based AIM data was relatively strong (64.09%) (Table 5). Each year experienced similar overall 463 

accuracy, ranging from 62.37% in 2013 to 68.54% in 2014. Accuracies deviated considerably 464 

when analyzed based on class. The tipping point class’ overall accuracy equaled 73.16% with its 465 

highest accuracy during 2015 at 83.26%. This class covered most of the study area. These 466 

numbers were much higher than the sagebrush recovery class, which had an overall accuracy of 467 

37.84% and a high in 2013 of 44.16%. The stable class performed much like the tipping point 468 

class with an overall accuracy of 65.12% and a high in 2013 of 73.91%. 469 

When the MTBS polygons were overlaid on the predictive map and compared to the 470 

sagebrush condition class underneath, we expected that more of the tipping point class would be 471 

encompassed than the other two classes because, by definition, it had a higher percent of highly 472 

flammable annual grass cover. Figure 4 showed exactly that phenomenon throughout the time 473 

series with more of the burned area occurring in the tipping point class each year. At two points 474 

in the time series, 2005 and 2010, the area burned in the tipping point and the sage recovery 475 

classes were almost equal. After both of those years, the amount of area burned in the tipping 476 

point class increased when compared to the amount of area burned in the sagebrush recovery 477 

class. A consistent downward trend appeared from 2011 – 2014 when the sagebrush recovery 478 

class declined as a percentage of the total area burned and the tipping point class area 479 

encompassed almost 100% of the burned area. There was a slight upturn in burned area for the 480 

sagebrush recovery class in 2015. The inverse of that trend occurred in the tipping point class as 481 

it increased as a percentage of the total burned area until 2015 when it turned slightly downward. 482 
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The stable class experienced a consistent downward trend from 2007 until 2012 when a slight 483 

increase occurred. The trend for the stable class was downward during the last three years with 484 

less than 1.5% of the area burned in that class during both 2014 and 2015.  485 

In the last 5 years of the study period, 71.08% of the area that burned was in the tipping 486 

point class, 22.50% was in the sage recovery class, and 6.42% in the stable class. In the last 3 487 

years of the study period, 91% of burns occurred in the tipping point class. The 5-year burned-488 

area percentages were similar to total-area percentages for the associated classes: tipping point 489 

class (70.36%); sage recovery class (21.31%); and stable class (8.35%). 490 

Discussion 491 

Mapping areas of stability and areas of change using machine-learning algorithms 492 

allowed both the identification of dominant abiotic variables that drive ecosystem dynamics and 493 

the variables’ important thresholds. Both the predictive and descriptive models for this study 494 

were developed using multiple drivers that represented climatic, topographic, and soils data 495 

because these variables were considered among the most important drivers of invasibility of 496 

sagebrush ecosystems (Roundy et al. 2018). Resilience to disturbance and stress was associated 497 

with climatic and topographic gradients, resistance to cheatgrass invasion was driven by 498 

temperature and precipitation regimes (Chambers et al. 2014), and the driver of variable 499 

interannual cheatgrass growth was highly variable precipitation (Bradley and Mustard 2005). 500 

Periods of limited soil moisture reduced plant germination and establishment (Bishop et al. 501 

2019), and management activities that sought to exclude non-native species introduced gaps in 502 

vegetation cover that caused increases in resource availability (Rau et al. 2014). Both phenomena 503 

created space for cheatgrass, an early-season and fast-growing plant, to have invaded by 504 
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capitalizing on available moisture and nutrients when temperatures warmed, earlier than most 505 

native plants (Boyte et al. 2016). 506 

Elevation was the most often-used variable in development of both the predictive and 507 

descriptive models, and the 1 602 m elevation threshold played an important role in ruleset 508 

development of the descriptive model. This elevation threshold was slightly above the mean 509 

elevation (1 562 m) for the overall study area, and substantially above the low end of the 510 

elevation range of 568 m. Elevation affected sagebrush invasibility indirectly through air and soil 511 

temperatures, plant communities and types, and plant productivity (Chambers et al. 2014). 512 

Historically, fire events were more common at higher elevations in the Great Basin than at lower 513 

elevations because higher plant productivity led to more continuous fuels that spread fire, and 514 

plants adapted to fire as a result (Chambers et al. 2014). The lower native plant productivity at 515 

lower, drier elevations left adequate space for annual grasses to invade and exploit unused 516 

resources. 517 

The elevational influence was evident in the study as 50% of the area classified as tipping 518 

point was defined by elevation thresholds lower than 1 602 m with almost 33% being lower than 519 

1 339 m. Less than 4% of the tipping point class’ area had an elevation threshold above 1 602 m. 520 

Better soil productivity at higher elevations increased plant productivity, which increased 521 

resistance to annual grass invasion, and while available water capacity varied little among 522 

sagebrush condition classes, soil organic matter was positively correlated with elevation. While 523 

we did not show both resiliency and resistance in the same pixel, we can presume that the stable 524 

class was derived from a pixel’s resistance to invasion, which was positively associated with 525 

resilience to disturbance (Chambers et al. 2014). The stable class was defined much differently 526 

than the other two classes when weighted averages of the most important variables were 527 
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considered (Table 3). The stable class was substantially more mesic and much cooler, typical of 528 

higher elevation sites in the study area. 529 

The 30-yr precipitation variable was used nearly as often as elevation in development of 530 

the predictive and descriptive models, demonstrating its strong influence on sagebrush condition 531 

class. The area mapped as tipping point class had higher average precipitation than the sagebrush 532 

recovery class, which seemed counter intuitive. However, given that the tipping point class 533 

covered more than 70% of the study area and with the wide diversity of sagebrush and annual 534 

grass productivity, these large-area precipitation (and elevation) means included a fair amount of 535 

site-specific variability. In addition, both elevation and precipitation played important roles in the 536 

separation of recovery versus tipping point areas, so the combined stratification of the 537 

classification-tree structure in precipitation and elevation may well account for much of the sub-538 

regional deviations from these large and diverse area precipitation means. 539 

In the northern Great Basin, March temperatures, much more than March precipitation, 540 

proved influential in a study that modeled and analyzed cheatgrass percent cover predictions 541 

using current and future climate data (Boyte et al. 2016). In the current study, March 542 

precipitation was one of the strongest drivers of sagebrush condition class while March 543 

temperature variables still exerted substantial influence on both the predictive and descriptive 544 

models. March’s climate was important to cheatgrass’s life cycle and its ability to compete with 545 

native plants in the semiarid Great Basin (Roundy et al. 2018), and with a weighted 30-yr 546 

average March temperature minimum below freezing for all classes (-5.38 °C for the stable 547 

class) (Table 3), cheatgrasses’ ability to survive drops in temperatures below 0 °C (Bykova and 548 

Sage 2012) was observed. Annual average precipitation was identified by Bradley (2009) as a 549 

strong predictor of cheatgrass presence in the Great Basin, and this variable was strongly 550 
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influential to the development of both the predictive and descriptive models. As a dominant 551 

driver of thresholds, 30-yr annual precipitation influenced 48% of the rulesets that covered 43% 552 

of the study area.  553 

 554 

Implications   555 

The spatially explicit maps revealed that most of the study area has been altered from its 556 

native state and has never recovered. These tipping points are likely to persist in the future as 557 

natural recovery in sagebrush ecosystems is a long-term process and restoration efforts can be 558 

marginally effective. Oftentimes subsequent disturbances interrupt natural recovery and 559 

restoration projects. Some areas have recovered or have been restored as evidenced by sagebrush 560 

recovery pixels. Stable pixels existed where sagebrush systems are most likely to persist in the 561 

future, although climate change can threaten the persistence of stable areas. The predictive model 562 

can be modified with future climate data to aid in identifying future achievable sagebrush 563 

recovery or stable persistence. 564 

The study delineated the abiotic variables that most influence the development of the 565 

sagebrush condition models. The descriptive model is unique in that it provides relative values 566 

that define the most influential variable’s thresholds. The values give clarity to some of the 567 

forces that drive sagebrush ecosystem stability and change. The study’s findings have 568 

implications for land managers, ecologists, fire modelers, and policymakers as they identify 569 

potential areas of disturbance, recovery, and stability and determine the best way forward to 570 

preserve sagebrush ecosystems and the species that inhabit them. Given the scale of the study 571 

area and the adequate geographic distribution of sampling points, analyzing relationships among 572 
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these forces and ecosystem change can elicit a better understanding of sagebrush ecosystems and 573 

enhance land management and policymaking efforts.  574 

Acknowledgements 575 

We thank Neal Pastick for his astute insights on the modeling process and his input to an earlier 576 

version of the manuscript. U.S. Geological Survey Land Change Science and National Land 577 

Imaging programs and the Bureau of Land Management funded the study. The funders had no 578 

role in the study or preparation of this manuscript. 579 

References 580 

[dataset] Boyte, S.P., Wylie, B., Gu, Y., 2019b. Estimating environmental thresholds for three classes of 581 

sagebrush condition in the western United States (2001 – 2015). U.S. Geological Survey data release. 582 

https://doi.org/10.5066/P98WBAL4.  583 

[dataset] Boyte, S.P., Wylie, B.K., 2017. A time series of herbaceous annual cover in the sagebrush 584 

ecosystem. U.S. Geological Survey data release. https://doi.org/10.5066/F71J98QK.  585 

Bansal, S., James, J.J., Sheley, R.L., 2014. The effects of precipitation and soil type on three invasive 586 

annual grasses in the western United States. J Arid Environ. 104, 38-42. 587 

http://dx.doi.org/10.1016/j.jaridenv.2014.01.010. 588 

Bishop, T.B.B., Munson, S., Gill, R.A., Belnap, J., Petersen, S.L., St Clair, S.B., 2019. Spatiotemporal 589 

patterns of cheatgrass invasion in Colorado Plateau National Parks. Landsc Ecol. 34, 925-941. 590 

https://doi.org/10.1007/s10980-019-00817-8. 591 

Blomberg, E.J., Sedinger, J.S., Atamian, M.T., Nonne, D.V., 2012. Characteristics of climate and landscape 592 

disturbance influence the dynamics of greater sage-grouse populations. Ecosphere. 3, 1-20. 593 

10.1890/ES11-00304.1. 594 

Boyte, S.P., Wylie, B.K., Major, D.J., 2016. Cheatgrass Percent Cover Change: Comparing Recent 595 

Estimates to Climate Change - Driven Predictions in the Northern Great Basin. Rangeland Ecol Manag. 596 

69, 265-279. http://dx.doi.org/10.1016/j.rama.2016.03.002. 597 

Boyte, S.P., Wylie, B.K., Major, D.J., 2019a. Validating a Time Series of Annual Grass Percent Cover in the 598 

Sagebrush Ecosystem. Rangeland Ecol Manag. 72, 347-359. https://doi.org/10.1016/j.rama.2018.09.004. 599 

Boyte, S.P., Wylie, B.K., Major, D.J., Brown, J.F., 2015. The integration of geophysical and enhanced 600 

Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a 601 

rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth. Int J 602 

Digit Earth. 8, 118-132. https://dx.doi.org/10.1080/17538947.2013.860196. 603 

Bradley, B.A., 2009. Regional analysis of the impacts of climate change on cheatgrass invasion shows 604 

potential risk and opportunity. Glob Change Biol. 15, 196-208. http://dx.doi.org/10.1111/j.1365-605 

2486.2008.01709.x. 606 

Bradley, B.A., Curtis, C.A., Fusco, E.J., Abatzoglou, J.T., Balch, J.K., Dadashi, S., Tuanmu, M.N., 2018. 607 

Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its 608 



27 

 

relationship to fire frequency, seasonality, and ignitions. Biological Invasions. 20, 1493-1506. 609 

https://doi.org/10.1007/s10530-017-1641-8. 610 

Bradley, B.A., Mustard, J.F., 2005. Identifying land cover variability distinct from land cover change: 611 

Cheatgrass in the Great Basin. Remote Sens Environ. 94, 204-213. 612 

https://doi.org/10.1016/j.rse.2004.08.016. 613 

Browning, D.M., Rango, A., Karl, J.W., Laney, C.M., Vivoni, E.R., Tweedie, C.E., 2015. Emerging 614 

technologies and cultural shifts advancing drylands research and management. Frontiers in Ecology and 615 

the Environment. 13, 52-60. https://doi.org/10.1890/140161. 616 

Bykova, O., Sage, R.F., 2012. Winter cold tolerance and the geographic range separation of Bromus 617 

tectorum and Bromus rubens, two severe invasive species in North America. Glob Chang Biol. 18, 3654-618 

3663. https://doi.org/10.1111/gcb.12003. 619 

Chambers, J.C., Bradley, B.A., Brown, C.S., D'Antonio, C., Germino, M.J., Grace, J.B., Hardegree, S.P., 620 

Miller, R.F., Pyke, D.A., 2014. Resilience to stress and disturbance, and resistance to Bromus tectorum L. 621 

invasion in cold desert shrublands of western North America. Ecosystems. 17, 360-375. 622 

https://doi.org/10.1007/s10021-013-9725-5. 623 

Chambers, J.C., Maestas, J.D., Pyke, D.A., Boyd, C.S., Pellant, M., Wuenschel, A., 2017. Using Resilience 624 

and Resistance Concepts to Manage Persistent Threats to Sagebrush Ecosystems and Greater Sage-625 

grouse. Rangel Ecol Manag. 70, 149-164. https://doi.org/10.1016/j.rama.2016.08.005. 626 

Chambers, J.C., Roundy, B.A., Blank, R.R., Meyer, S.E., Whittaker, A., 2007. What makes Great Basin 627 

sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs. 77, 117-145. 628 

https://doi.org/10.1890/05-1991. 629 

Chambers, J.C., Wisdom, M.J., 2009. Priority research and management issues for the imperiled Great 630 

Basin of the western United States. Restor Ecol. 17, 707-714. https://doi.org/10.1111/j.1526-631 

100X.2009.00588.x. 632 

Davies, K.W., Bates, J.D., 2019. Longer-Term Evaluation of Sagebrush Restoration After Juniper Control 633 

and Herbaceous Vegetation Trade-offs. Rangeland Ecol Manag. 72, 260-265. 634 

10.1016/j.rama.2018.10.006. 635 

Davies, K.W., Bates, J.D., Boyd, C.S., 2018. Post-wildfire seeding to restore native vegetation and limit 636 

exotic annuals: an evaluation in juniper-dominated sagerush steppe Restoration Ecology. 27, 120-127. 637 

https://doi.org/10.1111/rec.12848. 638 

Davis, M.A., Grime, P., Thompson, K., 2000. Fluctuating resources in plant communities: a general theory 639 

of invasibility. J Ecol. 88, 528-534. DOI 10.1046/j.1365-2745.2000.00473.x. 640 

Germino, M.J., Barnard, D.M., Davidson, B.E., Arkle, R.S., Pilliod, D.S., Fisk, M.R., Applestein, C., 2018. 641 

Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc Ecol. 33, 642 

1177-1194. https://doi.org/10.1007/s10980-018-0662-8. 643 

Gu, Y., Wylie, B.K., 2010. Detecting ecosystem performance anomalies for land management in the 644 

Upper Colorado River Basin using satellite observations, climate data, and ecosystem models. Remote 645 

Sens. 2, 1880-1891. https://doi.org/10.3390/rs2081880. 646 

Gu, Y.X., Wylie, B.K., Boyte, S.P., Picotte, J., Howard, D.M., Smith, K., Nelson, K.J., 2016. An Optimal 647 

Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression Tree Models 648 

Based on Remotely-Sensed Data. Remote Sens. 8, 943. https://doi.org/10.3390/rs8110943. 649 

Herrick, J.E., Van Zee, J.W., McCord, S.E., Courtright, E.M., Karl, J.W., Burkett, L.M., 2017. Monitoring 650 

Manual for Grassland, Shrubland, and Savanna Ecosystems. USDA - ARS Jornada Experimental Range: 651 

Las Cruces, NM. 652 

Jenkerson, C.B., Maiersperger, T.K., Schmidt, G.L., 2010. eMODIS—a user-friendly data source.  U.S. 653 

Geological Survey Open-File Report 2010-1055: Reston, VA. 654 

Jensen, J.R., 2005. Introductory digital image processing: A remote sensing perspective. Pearson 655 

Prentice Hall: Upper Saddle River, NJ. 526 p. 656 



28 

 

Monitoring Trends in Burn Severity. MTBS Data Access: Fire Level Geospatial Data. 657 

https://www.mtbs.gov/ accessed July 2018. 658 

Pilliod, D.S., Welty, J.L., Arkle, R.S., 2017. Refining the cheatgrass-fire cycle in the Great Basin: 659 

Precipitation timing and fine fuel composition predict wildfire trends. Ecol Evol. 7, 8126-8151. 660 

https://doi.org/10.1002/ece3.3414. 661 

PRISM Climate Group. Oregon State University. http://prism.oregonstate.edu/ accessed 27 August 2015. 662 

Quinlan, J.R. An Overview of Cubist. RuleQuest. https://www.rulequest.com/ accessed 27 June 2019. 663 

Quinlan, J.R. See5: An informal tutorial -- release 2.10. RuleQuest. https://www.rulequest.com/ 664 

accessed 27 June 2019. 665 

Rau, B.M., Chambers, J.C., Pyke, D.A., Roundy, B.A., Schupp, E.W., Doescher, P., Caldwell, T.G., 2014. Soil 666 

Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-667 

Steppe Ecosystems. Rangeland Ecol Manag. 67, 506-521. https://doi.org/10.2111/REM-D-14-00027.1. 668 

Rigge, M., Homer, C., Wylie, B., Gu, Y., Shi, H., Xian, G., Meyer, D.K., Bunde, B., 2019. Using remote 669 

sensing to quantify ecosystem site potential community structure and deviation in the Great Basin, 670 

United States. Ecological Indicators. 96, 516-531. https://doi.org/10.1016/j.ecolind.2018.09.037. 671 

Rigge, M., Wylie, B.K., Gu, Y., Belnap, J., Phuyal, K., Tieszen, L.L., 2013. Monitoring the status of forests 672 

and rangelands in the western United States using ecosystem performance anomalies. Int J Remote 673 

Sens. 34, 4049-4068. http://dx.doi.org/10.1080/01431161.2013.772311. 674 

Rose, R.A., Byler, D., Eastman, J.R., Fleishman, E., Geller, G., Goetz, S., Guild, L., Hamilton, H., Hansen, 675 

M., Headley, R., Hewson, J., Horning, N., Kaplin, B.A., Laporte, N., Leidner, A., Leimgruber, P., Morisette, 676 

J., Musinsky, J., Pintea, L., Prados, A., Radeloff, V.C., Rowen, M., Saatchi, S., Schill, S., Tabor, K., Turner, 677 

W., Vodacek, A., Vogelmann, J., Wegmann, M., Wilkie, D., Wilson, C., 2015. Ten ways remote sensing 678 

can contribute to conservation. Conserv Biol. 29, 350-359. https://doi.org/10.1111/cobi.12397. 679 

Roundy, B.A., Chambers, J.C., Pyke, D.A., Miller, R.F., Tausch, R.J., Schupp, E.W., Rau, B., Gruell, T., 2018. 680 

Resilience and resistance in sagebrush ecosystems are associated with seasonal soil temperature and 681 

water availability. Ecosphere. 9, e02417. https://doi.org/10.1002/ecs2.2417. 682 

Svejcar, T., Boyd, C., Davies, K., Hamerlynck, E., Svejcar, L., 2017. Challenges and limitations to native 683 

species restoration in the Great Basin, USA. Plant Ecol. 218, 81-94. https://doi.org/10.1007/s11258-016-684 

0648-z. 685 

The National Land Cover Database. Department of Interior, U.S. Geological Survey. 686 

http://www.mrlc.gov/ accessed 28 June 2019. 687 

U.S. Fish and Wildlife Service, 2013. Greater sage-grouse (Centrocercus urophasians) conservation 688 

objectives: Final report. U.S. Fish and Wildlife Service: Denver, CO. 689 

Wylie, B.K., Boyte, S.P., Major, D.J., 2012. Ecosystem Performance Monitoring of Rangelands by 690 

Integrating Modeling and Remote Sensing. Rangeland Ecol Manag. 65, 241-252. 691 

https://dx.doi.org/10.2111/Rem-D-11-00058.1. 692 

Wylie, B.K., Pastick, N.J., Picotte, J.J., Deering, C.A., 2018. Geospatial data mining for digitial raster 693 

mapping. GIScience & Remote Sensing. 56, 406-429. https://doi.org/10.1080/15481603.2018.1517445. 694 

Wylie, B.K., Zhang, L., Bliss, N., Ji, L., Tieszen, L.L., Jolly, W.M., 2008. Integrating modelling and remote 695 

sensing to identify ecosystem performance anomalies in the boreal forest, Yukon River Basin, Alaska. Int 696 

J Digit Earth. 1, 196-220. http://doi.org/10.1080/17538940802038366. 697 

 698 

 699 

 700 

 701 



29 

 

Table 1. Model accuracy assessments for the three datasets developed with regression-tree models. The relative 702 

error magnitude is the ratio of the average error magnitude to the error magnitude that would result from 703 

always predicting the mean value (Quinlan 2008).  704 

 Training  

Correlation 

coefficient (r) 

 

Mean 

absolute 

error 

 

Relative 

error 

Test 

Correlation 

coefficient (r) 

 

Mean 

absolute 

error 

 

Relative 

error 

Annual 

herbaceous 

0.92 4.4 0.33 0.91 4.6 0.34 

Sagebrush 

expected 

performance 

0.97 1.7 0.20 0.97 1.7 0.20 

Sagebrush site 

potential 

0.98 1.1 0.16 0.98 1.1 0.17 
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Table 2. Driving variables for the sagebrush condition class models. Frequency (%) of usage is shown for each 724 

variable for both models. Dashes indicate that a variable was not used. A 10-boost option was applied to the 725 

predictive model to improve model accuracy. 726 

 
% Variable usage 

Variable Predictive Descriptive 

Elevation 100 75 

30-yr precipitation (ppt) 100 73 

July temperature maximum (tmax) 100 14 

Soil organic matter 100 4 

March ppt 99 7 

June temperature minimum (tmin) 95 6 

July ppt 95 3 

Available water capacity 94 18 

March tmin 94 11 

June ppt 93 4 

July tmin 92 -- 

April ppt 90 6 

March tmax 89 2 

30-yr tmin 89 6 

May ppt 88 -- 

August ppt 87 3 

Spring ppt 87 -- 

April tmin 87 -- 

30-yr tmax 87 -- 

Summer ppt 85 -- 

April tmax 84 -- 

May tmax 79 -- 

August tmax 79 -- 

August tmin 77 -- 

Spring tmin 70 -- 

May tmin 69 -- 

June tmax 65 6 

Spring tmax 57 -- 

Summer tmin 57 -- 

Summer tmax 27 -- 

The predictive model's training and test accuracies (r) equal 87.30% and 74.60%, respectively. 

The 10-fold cross validation accuracy (r) equals 73.70%. 

The descriptive model's training and test accuracies (r) equal 67.70% and 69.40%, 

respectively. 

 

 

 727 

 728 

 729 
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Table 3. Weighted average by class and variable. These averages generally define the thresholds of the most 730 
influential variables within each class of the descriptive model.    731 

 

Variable             

 Elevation 

(m) 

30-y ppt 

(mm) AWC 

July 

tmax °C 

March 

tmin °C 

March 

ppt (mm) 

Total 

area (%) 

Class               

Recovery 1601.87 267.14 44.12 30.62 -2.74 26.26 21.29 

Tipping point 1504.72 349.57 44.35 29.18 -2.8 28.49 70.36 

Stable 1939.30 416.77 45.07 26.65 -5.38 40.49 8.35 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 



32 

 

Table 4. Dominant variable thresholds by class gleaned from the descriptive model’s rulesets. Threshold range is 752 
given, along with the ruleset(s) to which the threshold range applies. The weighted mean value for each 753 
dominant variable is reported for each class.  754 

Recovery class 
 

    

dominant thresholds 
 

    

Rulesets 1 - 7         
 

  
 

 Ruleset(s) as Weighted   

Driver Model threshold Ruleset(s) 

% of total 

land area 

class 

mean (µ) Class range 

Elevation (m) >1451 to ≤1602 2,3,4,6 4.53 1602 1442 - 1760 

 
>1339 to ≤1602 1 7.16 

 
 

 >1602 7 9.11 
 

 

30-yr July tmax (°C) >31 1,5 7.66 30.62 29.21 - 32.57 

 
≤30 2 <1 

 
 

 >30 4 1.46 
 

 

 >28 to ≤31 6 <1 
 

 

30-yr March ppt (mm) ≤36 2,4,6 2.94 26.26 18.93 - 29.70 

30-yr annual ppt (mm) ≤244 3 1.59 267.14 221.21 - 293.38 

  ≤338 7 9.11     

Tipping point class 
 

    

dominant thresholds 
 

    

Rulesets 8 - 16 
 

    

      

Elevation (m) >1602 9,12,15 2.51 1504.72 1169 - 1762 

 
≤1602 11,16 13.14 

 
 

 >1602 to ≤1798 8 <1 
 

 

 ≤1339 10 22.23 
 

 

30-yr annual ppt (mm) ≤338 9,12,13, 11.21 349.57 252.08 - 474.01 

 
>338 14 22.29 

 
 

March tmin (°C) ≤-4 8 <1 -2.80 -4.27 - -1.09 

  >-3 15 1.00     

Stable class 
 

    

dominant thresholds 
 

    

Rulesets 17 - 21 
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Elevation (m) >1602 19,20,21 2.84 1939.30 1666 - 2129 

 
>2002 18 3.99 

 
 

 >1798 17 1.51 
 

 

30-yr annual ppt (mm) ≤338 17,19,20,21 4.35 416.77 264.50 - 562.94 

 
>338 18 3.99 

 
 

March tmin (°C) ≤-3 19,20,21 2.84 -5.38 -6.84 - -1.63 

Table 5. The Assessment Inventory and Monitoring (AIM) accuracy assessment by class and year for the 755 

predictive sagebrush condition classes.  756 

 757 

 758 
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 776 

 777 
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 779 

  Year Class 

Sample 

size 

Number 

accurate 

Percent 

accurate 

 
2013 Recovery 77 34 44.16 

 
 Tipping point 234 152 64.96 

 
 Stable 69 51 73.91 

Sub total     380 237 62.37 

 
2014 Recovery 76 27 35.53 

 
 Tipping point 198 159 80.30 

 
 Stable 47 34 72.34 

Sub total     321 220 68.54 

 
2015 Recovery 101 31 30.69 

 
 Tipping point 227 189 83.26 

 
 Stable 59 32 54.24 

Sub total     387 252 65.12 

 
2016 Recovery 153 62 40.52 

 
 Tipping point 485 337 69.48 

 
 Stable 126 79 62.70 

Sub total     764 478 62.57 

Total     1852 1187 64.09 
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 783 

 784 

Figure 1. Potential reference data points. Pixels that met the criteria from 4 datasets for one of 3 classes of 785 
sagebrush condition are displayed. The mask (white inside map’s borders) covers areas not classified as 786 
herbaceous/grassland or shrubs by the 2011 National Land Cover Database (NLCD) and/or areas that are higher 787 
than 2 250 m elevation.  788 

Figure 2. Data and processes. The flowchart shows the data and outlines the processes used to develop the 2 789 
sagebrush condition class maps. The data and processes are identical until the decision-tree modeling step 790 
where we developed 1 model that used a tree-structure for predictive purposes and a second model that used 791 
rulesets for descriptive purposes and the interpretation of abiotic thresholds of sagebrush condition class. 792 

Figure 3. A spatially explicit ruleset map. Each ruleset, or classifier, is defined by the variable(s) and its value(s) 793 
used to establish if-then rules in the descriptive model. Rules 1 – 7 represent sagebrush recovery areas, 8 – 16 794 
represent tipping point areas, and 17 – 21 represent stable areas. The rulesets are prioritized so that those with 795 
higher accuracy spatially supersede those with lower accuracy when a pixel is defined by more than 1 ruleset. 796 
The mask (white) covers areas not classified as herbaceous/grassland or shrubs by the 2011 National Land Cover 797 
Database (NLCD) and/or areas that are higher than 2 250 m elevation. 798 

Figure 4. A chart that displays each sagebrush condition class – sagebrush recovery, tipping point, or stable – as 799 
a percent of the total area burned in the study area by year. We used a time dimension in our criteria to define 800 
each class. This time dimension focused the transition from a degraded state to a sagebrush recovery class and 801 
the transition from a stable sagebrush ecosystem state to a degraded state, or tipping point class, on the last 5 802 
years of the time series. Given this time dimension, the last 5 years of the time series are most critical in 803 
assessing the accuracy. 804 

Figure 5. A spatially explicit predictive map. Each pixel is classified as one of 3 sagebrush condition classes and 805 

delineated by confidence levels that ranged from 0.33 to 1.00 determined by a decision-tree model. A class 806 

confidence level equal to or greater than 0.70 was labeled high probability; a class confidence level equal to or 807 

greater than 0.50 and less than 0.70 was labeled moderate probability; and a class confidence level equal to or 808 

greater than 0.33 and less than 0.50 was labeled low probability. The mask (white) covers areas not classified as 809 

herbaceous/grassland or shrubs by the 2011 National Land Cover Database (NLCD) and/or areas that are higher 810 

than 2 250 m elevation. 811 














